Finsler Steepest Descent with Applications to Piecewise-regular Curve Evolution

نویسندگان

  • Guillaume Charpiat
  • Giacomo Nardi
  • Gabriel Peyré
  • François-Xavier Vialard
چکیده

This paper introduces a novel steepest descent flow in Banach spaces. This extends previous works on generalized gradient descent, notably the work of Charpiat et al. [12], to the setting of Finsler metrics. Such a generalized gradient allows one to take into account a prior on deformations (e.g., piecewise rigid) in order to favor some specific evolutions. We define a Finsler gradient descent method to minimize a functional defined on a Banach space and we prove a convergence theorem for such a method. In particular, we show that the use of non-Hilbertian norms on Banach spaces is useful to study non-convex optimization problems where the geometry of the space might play a crucial role to avoid poor local minima. We show some applications to the curve matching problem. In particular, we characterize piecewise rigid deformations on the space of curves and we study several models to perform piecewise rigid evolution of curves. 2010 Mathematics Subject Classification: Primary 49M25; Secondary 65K10, 68U05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics

This paper studies the space of BV 2 planar curves endowed with the BV 2 Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the ex...

متن کامل

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

Nonlinear steepest descent asymptotics for semiclassical limit of integrable systems: Continuation in the parameter space

The initial value problem of an integrable system, such as the Nonlinear Schrödinger equation, is solved by subjecting the linear eigenvalue problem arising from its Lax pair to inverse scattering, and, thus, transforming it to a matrix Riemann-Hilbert problem (RHP) in the spectral variable. In the semiclassical limit, the method of nonlinear steepest descent ([4], [5]), supplemented by the g-f...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

A Gradient-Descent Method for Curve Fitting on Riemannian Manifolds

Given data points p0, . . . , pN on a closed submanifold M of R n and time instants 0 = t0 < t1 < . . . < tN = 1, we consider the problem of finding a curve γ on M that best approximates the data points at the given instants while being as “regular” as possible. Specifically, γ is expressed as the curve that minimizes the weighted sum of a sum-of-squares term penalizing the lack of fitting to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013